Home
Class 12
MATHS
I=int(2)^(3)(1)/(x)dx...

I=int_(2)^(3)(1)/(x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

I=int(2x^(3)+4x+1)/(x)dx

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx The value of I^(-1) .

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx. The value of I^(-1) .

(i)int(x^(3)-1)/(x^(2))dx(ii)int(x^(2/3)+1)dx

" (i) "int_(0)^(3)(dx)/((x+2)sqrt(1+x))

The number of positive continuous f(x) defined in [0,1] for with I_(1)=int_(0)^(1)f(x)dx=1,I_(2)=int_(0)^(1)xf(x)dx=a , I_(3)=int_(0)^(1)x^(2)f(x)dx=a^(2) is /are

If I_(1)=int_(0)^(oo)f((2)/(x)+(x)/(2))(ln x)/(x)dx,I_(2)=int_(0)^(oo)f((2)/(x)+(x)/(2))(dx)/(x) and I_(3)=int_(-oo)^( oo)xf(e^(x)+e^(x))dx then

If I=int_(3)^(4)(1)/((log x)^((1)/(3)))dx, then