Home
Class 12
MATHS
Find the number of values of x satisfyin...

Find the number of values of x satisfying `2(log_2x)^2+(1-sqrt(2))log_2x^2=2sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of value(s) of x satisfying log_(x^(2)+2)(5+sqrt(x))+log_(2+sqrt(x))(5+x^(2))=0 is/are

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

The number of values of x satisfying 3^((log_(3)x)^(2))=2^((log_(2)x)^(2)) is equal to

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :

The number of value(s) of x satisfying 1-log_(3)(x+1)^(2)=1/2log_(sqrt(3))((x+5)/(x+3)) is

The number of value(s) of x satisfying 1-log_9(x+1)^2=1/2log_(sqrt(3))((x+5)/(x+3)) is

The number of real values of x satisfying the equation log_(5)[(2+sqrt(5))^(x)-(sqrt(5)2)^(x)]=(1)/(2)-3log_((1)/(5))2