Home
Class 12
MATHS
" (ii) "f(x)=1-(x-1)^(2/3)" on "[0,2]...

" (ii) "f(x)=1-(x-1)^(2/3)" on "[0,2]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=0, f(1)=1, f(2)=2 and f(x)=f(x-2)+f(x-3) " for " x=3, 4, 5, ………….., then f(9)=

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 ;0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 ;0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

If f(x)=int(3x^2+1)/((x^2-1)^3)dx and f(0)=0, then the value of |2/(f(2))| is___

Let f(x) = {{:(x^(2)/2", "0 lexlt1),(2x^(2)-3x+3/2", "1lexle2):} Discuss the continuity of f, f' and f'' on [0, 2].

If f(x)=int(dx)/((1+x^2)^ (3/2) and f(0)=0 then what is the value of f(1)?