Home
Class 12
MATHS
(x+1)/(sqrt((x^(2)+1)))...

(x+1)/(sqrt((x^(2)+1)))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

Simplify : (x + sqrt(x^(2) - 1))/(x - sqrt(x^(2) -1)) + (x - sqrt(x^(2) -1))/(x + sqrt(x^(2) -1)) If the result of the simplification is equal to 14, then find the value of x

Simplify (x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))+(x-sqrt(x^(2)-1))/(x+sqrt(x^(2)-1))

The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi se q u a lto e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^3)))+c e^x(1/(sqrt(1+x^2))-1/(sqrt((1+x^2)^3)))+c e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))+c none of these

Differentiate (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)) with respect to x:

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=