Home
Class 11
MATHS
Show that | [a^2 +lambda, ab, ac], [ab, ...

Show that `| [a^2 +lambda, ab, ac], [ab, b^2+lambda, bc], [ac, bc, c^2+lamda]|` is divisible by `lambda^2` and find the other factor

Promotional Banner

Similar Questions

Explore conceptually related problems

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

Show that |{:(a^2 + x^2 , ab, ac),(ab, b^2 + x^2 , bc),(ac, bc, c^2 +x^2):}| is divisible by x^4

show that |[a^2+x^2,ab ,ac],[ab,b^2+x^2,bc],[ac,bc,c^2+x^2]| is divisible x^4

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=