Home
Class 14
MATHS
" If "(a)/(b)-(4)/(5)" and "(b)/(c)-(15)...

" If "(a)/(b)-(4)/(5)" and "(b)/(c)-(15)/(16)," drom "(r^(3)-a^(2))/(r^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a)/(b)=(4)/(5) and (b)/(c)=(15)/(16), then (c^(2)-a^(2))/(c^(2)+a^(2)) is (a) (1)/(7)( b) (7)/(25)( c) (3)/(4) (d) None of these

If (a)/(b)=(4)/(5) and (b)/(c)=(15)/(16), find the value of (c^(2)-a^(2))/(c^(2)+a^(2))

If (a)/(b)=(4)/(5)and(b)/(c)=(15)/(16) then (c^(2)-a^(2))/(c^(2)+a^(2)) would be (1)/(7) b.(3)/(4) c.(7)/(25) d.none of these

The value of sum_(r=1)^(15)(r2^r)/((r+2)!) is ((17)!-2^16)/((17)!) b. ((18)!-2^(17))/((18)!) c. ((16)!-2^(15))/((16)!) d. ((15)!-2^(14))/((15)!)

The value of sum_(r=1)^(15)(r2^r)/((r+2)!) is (a). ((17)!-2^16)/((17)!) (b). ((18)!-2^(17))/((18)!) (c). ((16)!-2^(15))/((16)!) (d). ((15)!-2^(14))/((15)!)

The value of sum_(r=1)^(15)(r2^r)/((r+2)!) is (a). ((17)!-2^16)/((17)!) (b). ((18)!-2^(17))/((18)!) (c). ((16)!-2^(15))/((16)!) (d). ((15)!-2^(14))/((15)!)

The value of sum_(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2^(16))/((17)!) (b) ((18)!2^(17))/((18)!) (c) ((16)!-2^(15))/((16)!) (d) ((15)!-2^(14))/((15)!)

If, for real numbers a, b, c, r with |r| gt 1, x = a + (a)/(r ) + (a)/(r^(2)) +…, " " y = b - (b)/(r ) + (b)/(r^(2)) - (b)/(r^(3))+… and z = c + (c )/(r^(2)) + (c )/(r^(4)) +… , then show that xyc = abz.

if r>1 and x=a+(a)/(r)+(a)/(r^(2))+.........oo,y=b-(b)/(r)+(b)/(r^(2))-(b)/(r^(2)) and z=c+(c)/(r^(2))+(c)/(r^(4))+............oo then (xy)/(z)

The value of sum_(r=1)^(15)(r2^(r))/((r+2)!) is ((17)!-2^(16))/((17)!)b((18)!-2^(17))/((18)!)c*((16)!-2^(15))/((16)!)d.((15)!-2^(14))/((15)!)