Home
Class 9
MATHS
2sqrt(3)+1+(17)/(3sqrt(2)-1)...

2sqrt(3)+1+(17)/(3sqrt(2)-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

(22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)(2)(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

Simplify : (22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is

(1)/(1-sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)-sqrt(3))-(2)/(1+sqrt(2)-sqrt(3))+(3)/(sqrt(2))

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)) (ii) (sqrt(5))/(2sqrt(3)) (iii) (1)/(2+ sqrt(3)) (1)/(sqrt(3)) (v) (1)/((5+3sqrt(2)) (vi) (1)/(sqrt(7) - sqrt(6)) (vi) (1)/(sqrt(7) - sqrt(6)) (viii) (1+ sqrt(2))/(2-sqrt(2)) (ix) (3-2sqrt(2))/(3+2sqrt(2))

(-sqrt(3)/2 + sqrt(3))/(1/sqrt(2)-1)=

(22) / (2sqrt (3) +1) + (17) / (2sqrt (3) -1)

The value of 6+log_((3)/(2))((1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))sqrt(4-(1)/(3sqrt(2))...cdots))))