Home
Class 9
MATHS
((27)/(5sqrt(3)+2))...

((27)/(5sqrt(3)+2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: 5sqrt(3)+2sqrt(27)+1/(sqrt(3))

Simplifiy ((3)/(2 +sqrt(3))-(2)/(2-sqrt(3)))/(2-5sqrt(3)) .

If sqrt3 = 1.732 …. And sqrt(27) = 5.196 ….. " then " (sqrt(27) -sqrt(3))^(2) =

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) (ii) (5+2sqrt(3))/(7+4sqrt(3)) (iii) (1+sqrt(2))/(3-2sqrt(2)) (2sqrt(6)-sqrt(5))/(3sqrt(5)-2sqrt(6)) (v) (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18)) (vi) (2sqrt(3)-sqrt(5))/(2sqrt(3)+3sqrt(3))

If ((x-2sqrt(6))(5sqrt(3)+5sqrt(2)))/(5sqrt(3)-5sqrt(2))=1, then the

Add (i) (2sqrt(3)-5sqrt(2)) and (sqrt(3) + 2sqrt(2)) (ii) (2sqrt(2) + 5sqrt(3) - 7 sqrt(5) and (3sqrt(3)-sqrt(2) + sqrt(5)) (iii) ((2)/(3) sqrt(7) -(1)/(2)sqrt(2)+6sqrt(11)) and ((1)/(3)sqrt(7) + (3)/(2)-sqrt(11))

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

(sqrt(5)+sqrt(3))((3sqrt(3))/(sqrt(5)+sqrt(2))-sqrt(5)/(sqrt(3)+sqrt(2))) is equal to :

Simplify : 5sqrt(3)+2sqrt(27)+1/sqrt(3)