Home
Class 10
MATHS
([cr055" multiplication "],[(pi)/(a)+(y)...

([cr055" multiplication "],[(pi)/(a)+(y)/(b)=a+b,(a)/(a^(2))+(3)/(b)2bar(s)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equation by cross- multiplication method: (a)/(x)-(b)/(y)=0 and a(b^(2))/(x)+a(b^(2))/(y)=a^(2)+b^(2)

Solve by cross multiplication: (a-b)x+(a+b)y=2a-b(a-b)x-(a+b)y=ab

Solve the following system of equations by method of cross-multiplication: x(a-b+(a b)/(a-b))=y(a+b-(a b)/(a+b)),\ \ \ \ \ \ x+y=2a^2

If bar(a),bar(b) and bar(c) are non-coplanar unit vectors such that bar(a)times(bar(b)timesbar(c))=(1)/(sqrt(2))(bar(b)+bar(c)) ],then which of the following statements are correct A. (bar(a),bar(c))=(3 pi)/(4) B. (bar(a),bar(b))=(3 pi)/(4) C. (bar(a),bar(b)+bar(c))=(pi)/(2) D.(bar(b),bar(c))=0

If bar(a),bar(b),bar(b),bar(c) are three non coplanar vectors bar(p)=(bar(b)xxbar(c))/([bar(a)bar(b)bar(c)]),bar(q)=(bar(c)xxbar(a))/([bar(a)bar(b)bar(c)]),bar(r)=(bar(a)xxbar(b))/([bar(a)bar(b)bar(c)]) then (2bar(a)+3bar(b)+4bar(c))*bar(p)+(2bar(b)+3bar(c)+4bar(a))bar(q)+(2bar(c)+3bar(a)+4bar(b))*bar(r)=

If bar(a),bar(b),bar(c) are three non coplanar vectors bar(p)=((bar(b)xxbar(c)))/([bar(a)bar(b)bar(c)]),bar(q)=(bar(c)xxbar(a))/([bar(a)bar(b)bar(c)]),bar(r)=(bar(a)xxbar(b))/([bar(a)bar(b)bar(c)]) then (2bar(a)+3bar(b)+4bar(c))*bar(p)+(2bar(b)+3bar(c)+4bar(a))*bar(q)+(2bar(c)+3bar(a)+4bar(b))*bar(r)

bar(a),bar(b) are such that |bar(a)|=sqrt(3),|bar(b)|=2 and (bar(a),bar(b))=(pi)/(2). Then the area of the triangle with adjacent sides bar(a)+2bar(b) and 2bar(a)+bar(b) is

If [(bar(a)+2bar(b)+3bar(c))times(bar(b)+2bar(c)+3bar(a))].(bar(c)+2bar(a)+3bar(b))=54 , where bar(a),bar(b)&bar(c) are 3 non coplanar vectors then |[bar(a).bar(a)quad bar(a).bar(b)quad bar(a).bar(c)],[bar(b).bar(a)quad bar(b).bar(b)quad bar(b).bar(c)],[bar(c).bar(a)quad bar(c).bar(b)quad bar(c).bar(c)]|

The point of intersection of the plane bar(r)=(bar(a)-bar(b))+s(bar(a)+bar(b)+bar(c))+t(bar(a)-bar(b)+bar(c)) and the line bar(r)=(2bar(a)+3bar(b))+pbar(c) is