Home
Class 12
MATHS
The product of minimum value of x^(x) an...

The product of minimum value of `x^(x)` and maximum value of `((1)/(x))^(x)` is

A

`e`

B

`e^(-1)`

C

`1`

D

`e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of the minimum value of \( x^x \) and the maximum value of \( \left(\frac{1}{x}\right)^x \). ### Step 1: Finding the Minimum Value of \( x^x \) 1. **Define the function:** Let \( y_1 = x^x \). 2. **Take the natural logarithm:** \[ \log y_1 = x \log x \] 3. **Differentiate using the product rule:** \[ \frac{1}{y_1} \frac{dy_1}{dx} = \log x + 1 \] Therefore, \[ \frac{dy_1}{dx} = y_1 (\log x + 1) = x^x (\log x + 1) \] 4. **Set the derivative to zero for critical points:** \[ x^x (\log x + 1) = 0 \] Since \( x^x \) is always positive for \( x > 0 \), we set: \[ \log x + 1 = 0 \implies \log x = -1 \implies x = e^{-1} = \frac{1}{e} \] 5. **Find the minimum value:** \[ y_1 \text{ at } x = \frac{1}{e} \implies y_1 = \left(\frac{1}{e}\right)^{\frac{1}{e}} = \frac{1}{e^{1/e}} \] ### Step 2: Finding the Maximum Value of \( \left(\frac{1}{x}\right)^x \) 1. **Define the function:** Let \( y_2 = \left(\frac{1}{x}\right)^x = x^{-x} \). 2. **Take the natural logarithm:** \[ \log y_2 = -x \log x \] 3. **Differentiate using the product rule:** \[ \frac{1}{y_2} \frac{dy_2}{dx} = -\log x - 1 \] Therefore, \[ \frac{dy_2}{dx} = y_2 (-\log x - 1) = x^{-x} (-\log x - 1) \] 4. **Set the derivative to zero for critical points:** \[ x^{-x} (-\log x - 1) = 0 \] Again, since \( x^{-x} \) is always positive for \( x > 0 \), we set: \[ -\log x - 1 = 0 \implies \log x = -1 \implies x = e^{-1} = \frac{1}{e} \] 5. **Find the maximum value:** \[ y_2 \text{ at } x = \frac{1}{e} \implies y_2 = \left(\frac{1}{\frac{1}{e}}\right)^{\frac{1}{e}} = e^{1/e} \] ### Step 3: Calculate the Product Now, we need to find the product of the minimum value of \( y_1 \) and the maximum value of \( y_2 \): \[ \text{Product} = \left(\frac{1}{e^{1/e}}\right) \cdot \left(e^{1/e}\right) = \frac{1}{e^{1/e}} \cdot e^{1/e} = 1 \] ### Final Answer Thus, the product of the minimum value of \( x^x \) and the maximum value of \( \left(\frac{1}{x}\right)^x \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE -1 (SECTION -C )|2 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE -1 (SECTION - D )|3 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE -1 (SECTION - A)|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos

Similar Questions

Explore conceptually related problems

The maximum value of ((1)/(x))^(x) is

The maximum value of x^(1//x) is

The minimum value of 2x^(2)+x-1 is

The product of the minimum value of the function f(x)=9|x|-8 and the maximum value of the function g(x)=11-|x+8| is

The minimum value of sin x+cos x-1 is

For all real values of x, the maximum value of (1-x+x^(2))/(1+x+x^(2)) is :