Home
Class 12
MATHS
f (x) = {{:( tan^(-1) x , "," , |x| lt (...

`f (x) = {{:( tan^(-1) x , "," , |x| lt (pi)/(2)) , ((pi)/(2) - |x| , "," , |x| ge (pi)/(2)):}` then

A

f(x) has no point of local maxima

B

f(x) has only one point of local maxima

C

f(x) has exactly two points of local maxima

D

f(x) has exactly two points of local minima

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined in the piecewise manner: 1. **Define the function**: \[ f(x) = \begin{cases} \tan^{-1}(x) & \text{if } |x| < \frac{\pi}{2} \\ \frac{\pi}{2} - |x| & \text{if } |x| \geq \frac{\pi}{2} \end{cases} \] 2. **Identify the intervals**: - For \( |x| < \frac{\pi}{2} \), the function is \( f(x) = \tan^{-1}(x) \). - For \( |x| \geq \frac{\pi}{2} \), the function is \( f(x) = \frac{\pi}{2} - |x| \). 3. **Find the derivative**: - For \( |x| < \frac{\pi}{2} \): \[ f'(x) = \frac{1}{1+x^2} \] - For \( |x| \geq \frac{\pi}{2} \): \[ f'(x) = -1 \quad \text{(for } x \geq \frac{\pi}{2}\text{)} \quad \text{and} \quad f'(x) = 1 \quad \text{(for } x \leq -\frac{\pi}{2}\text{)} \] 4. **Analyze critical points**: - For \( |x| < \frac{\pi}{2} \), since \( f'(x) > 0 \) for all \( x \) in this interval, there are no local maxima or minima. - For \( |x| \geq \frac{\pi}{2} \), the function is linear and decreasing, thus no local maxima or minima exist in this region either. 5. **Check endpoints**: - At \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} - \frac{\pi}{2} = 0 \] - At \( x = -\frac{\pi}{2} \): \[ f\left(-\frac{\pi}{2}\right) = \frac{\pi}{2} - \frac{\pi}{2} = 0 \] 6. **Conclusion**: - The function \( f(x) \) has only one point of local maxima at \( x = 0 \) where \( f(0) = 0 \) since it is the highest point in the interval \( |x| < \frac{\pi}{2} \). Thus, the answer is that \( f(x) \) has only one point of local maxima.
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE -1 (SECTION -C )|2 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE -1 (SECTION - D )|3 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE -1 (SECTION - A)|7 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos

Similar Questions

Explore conceptually related problems

f(x)={tan^(-1)x,|x|<(pi)/(4) and (pi)/(2)-|x|,|x|<=(pi)/(4)

Lt_(x->(pi)/(2))((1)/(2)pi-x)tan x

f (x) = {(cos x) / ((pi) / (2) -x), x! = (pi) / (2) 1, x = (pi) / (2)

Let f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(pi)/2 lt x lt (pi)/2 ),(cos x, ",", "if" x ge (pi)/2 ):} Then

If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(pi)/(2)):} at x =(pi)/(2) is

lim_( x to (pi/(2)) (tan2x)/(x-(pi)/(2))

If f(x) = {(1, ",", "when" 0 lt x le (3pi)/4),(2(sin) 2/9x, ",", "when" (3pi)/4 lt x lt pi):} , then