Home
Class 12
MATHS
Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, ...

Let f(x) = `{{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):}` then f(x) has

A

local maximum at ` x = pi//2`

B

local minima at `x = pi//2`

C

absolute minima at x = `0 , pi`

D

absolute maxima at `x = pi //2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the piecewise function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} x^3 + x^2 - 10x & \text{for } -1 \leq x < 0 \\ \sin x & \text{for } 0 \leq x < \frac{\pi}{2} \\ 1 + \cos x & \text{for } \frac{\pi}{2} \leq x \leq \pi \end{cases} \] ### Step 1: Find the derivative \( f'(x) \) for each piece of the function. 1. For \( -1 \leq x < 0 \): \[ f'(x) = 3x^2 + 2x - 10 \] 2. For \( 0 \leq x < \frac{\pi}{2} \): \[ f'(x) = \cos x \] 3. For \( \frac{\pi}{2} \leq x \leq \pi \): \[ f'(x) = -\sin x \] ### Step 2: Set the derivatives to zero to find critical points. 1. For \( -1 \leq x < 0 \): \[ 3x^2 + 2x - 10 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 3 \cdot (-10)}}{2 \cdot 3} = \frac{-2 \pm \sqrt{4 + 120}}{6} = \frac{-2 \pm \sqrt{124}}{6} = \frac{-2 \pm 2\sqrt{31}}{6} = \frac{-1 \pm \sqrt{31}}{3} \] We need to check which of these values lie in the interval \([-1, 0)\). 2. For \( 0 \leq x < \frac{\pi}{2} \): \[ \cos x = 0 \implies x = \frac{\pi}{2} \] 3. For \( \frac{\pi}{2} \leq x \leq \pi \): \[ -\sin x = 0 \implies x = \pi \] ### Step 3: Evaluate the critical points and endpoints. 1. For \( x = -1 \): \[ f(-1) = (-1)^3 + (-1)^2 - 10(-1) = -1 + 1 + 10 = 10 \] 2. For \( x = 0 \): \[ f(0) = \sin(0) = 0 \] 3. For \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = 1 + \cos\left(\frac{\pi}{2}\right) = 1 + 0 = 1 \] 4. For \( x = \pi \): \[ f(\pi) = 1 + \cos(\pi) = 1 - 1 = 0 \] ### Step 4: Compare the function values to find absolute maxima and minima. - \( f(-1) = 10 \) - \( f(0) = 0 \) - \( f\left(\frac{\pi}{2}\right) = 1 \) - \( f(\pi) = 0 \) ### Conclusion: - The **absolute maximum** occurs at \( x = -1 \) with \( f(-1) = 10 \). - The **absolute minimum** occurs at \( x = 0 \) and \( x = \pi \) with \( f(0) = 0 \) and \( f(\pi) = 0 \). ### Final Answer: - **f(x) has an absolute maximum at \( x = -1 \) and absolute minima at \( x = 0 \) and \( x = \pi \).**
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE - 3|32 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE -4 (LEVEL - I)|10 Videos
  • MAXIMA AND MINIMA

    MOTION|Exercise EXERCISE -2 (LEVEL- I)|26 Videos
  • MATRICES

    MOTION|Exercise Exercise - 4 (Level-II)|28 Videos
  • METHOD OF DIFFERENTIATION

    MOTION|Exercise EXERCISE - 4 LEVEL -II|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le x):}" Then at "x=pi/2 , f(x) has:

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f(x) = {{:(sgn(x)+x",",-oo lt x lt 0),(-1+sin x",",0 le x le pi//2),(cos x",",pi//2 le x lt oo):} , then number of points, where f(x) is not differentiable, is/are

Let f(x)={{:(x^2+4x "," -3 le x le 0),(-sin x ","0 lt x le pi//2 ),(-cos x -1 "," pi//2 lt x le pi):} which one of the following is not true ?

Let f(x) = [{:( sin (pi)/(2) x "," , 0 le x le 1) , (3 - 2x "," , x ge 1):} then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is