Home
Class 12
PHYSICS
Calculate the energy released when 1000 ...

Calculate the energy released when 1000 small water drops each of same radius `10^(-7)m` coalesce to form one large drop. The surface tension of water is `7.0xx10^(-2)N//m`.

Text Solution

Verified by Experts

Let r be the radius of smaller drops and R of bigger one. Equating the initial and final volumes, we have
`( 4)/( 3) pi R^(3) = ( 1000) ((4)/( 3) pi r^(3))`
or `R = 10 r = ( 10 ) ( 10^(-7)) m ` or `R = 10^(-6) m`
Further, the water drops have only one free surface. Therefore,
`Delta A = 4pi R^(2) - ( 1000) ( 4pi r^(2))`
`= 4 pi [ ( 10^(-6))^(2) - ( 10^(3)) ( 10^(-7)) ^(2) ]` Here, negative sign implies that surface area is deceasing . Hence, energy released in the process.
`U= T | Delta A | = ( 7 xx 10^(-2)) ( 36 pi xx 10^(-12))`
`= 7.9 xx 10^(-12)J`
Promotional Banner

Topper's Solved these Questions

  • SURFACE TENSION & VISCOSITY

    MOTION|Exercise Exercise - 1 Objective Problems | JEE Main|19 Videos
  • SURFACE TENSION & VISCOSITY

    MOTION|Exercise Exercise - 2 (Level-I) Objective Problems | JEE Main|11 Videos
  • SURFACE TENSION

    MOTION|Exercise Exercise - 3 | Section - B Previous Year Problems | AIEEE|12 Videos
  • Thermodynamics

    MOTION|Exercise EXERCISE - 3 SECTION b|26 Videos

Similar Questions

Explore conceptually related problems

What amount of energy will be liberted if 1000 droplets of water each of diameter 10^(-6) cm. coalesce to from a bigger drop. Surface tension of water is 75xx10^(-3) Nm^(-1)

What amount of energy will be liberated if 1000 droplets of water, each of diameter 10^(-8)cm, coalesce to form a bigger drop. Surface tension of water is 0.072"Nm"^(-1).

Twenty seven droplets of water, each of radius 0.1 mm coalesce into a single drop. Find the change in surface energy. Surface tension of water is 0.072 N/m.

Calculate the pressure inside a small air bubble of radius 0.2 mm located just below the surface of water. Take, Surface tension of water =7.2 xx 10^(-2) N//m Atmospheric pressure =1.01 xx 10^(5) N//m^(2)

Some drops each of radius r coalesce to form a large drop of radius R . The surface tension T. Find the change in surface energy per unit volume?

Two mercury drops each of radius r merge to form a bigger drop. Calculate the surface energy released.

1000 small water drops, each of radius r , combine and form a big drop. In this process, find decrease in surface energy.

Two small drops of mercury, each of radius R , coalesce to form a single large drop. The ratio of the total surface energies before and after the change is