Home
Class 12
PHYSICS
Evaluate the following integrals int(0...

Evaluate the following integrals
`int_(0)^(pi//2)cos x dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \cos x \, dx \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Integral**: We are asked to evaluate the definite integral of \( \cos x \) from \( 0 \) to \( \frac{\pi}{2} \). \[ \int_{0}^{\frac{\pi}{2}} \cos x \, dx \] 2. **Find the Antiderivative**: The antiderivative of \( \cos x \) is \( \sin x \). Therefore, we can write: \[ \int \cos x \, dx = \sin x + C \] where \( C \) is the constant of integration. 3. **Apply the Limits**: Since we are dealing with a definite integral, we will evaluate \( \sin x \) at the upper limit \( \frac{\pi}{2} \) and the lower limit \( 0 \): \[ \left[ \sin x \right]_{0}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0) \] 4. **Calculate the Values**: Now, we substitute the values: - \( \sin\left(\frac{\pi}{2}\right) = 1 \) - \( \sin(0) = 0 \) Therefore, we have: \[ \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] 5. **Final Result**: Thus, the value of the definite integral is: \[ \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1 \]
Promotional Banner

Topper's Solved these Questions

  • UNITS AND DIMENSIONS, BASIC MATHEMATICS

    MOTION|Exercise Exercise - 1 (Objective Problems) (SECTON-A:- UNIT AND DIMENSION )|20 Videos
  • UNITS AND DIMENSIONS, BASIC MATHEMATICS

    MOTION|Exercise Exercise - 1 (Objective Problems) (SECTION - B : Dimension and use of dimensions )|28 Videos
  • UNIT & DIMENSIONS

    MOTION|Exercise Exercise - 4 (Level - II) (PREVIOUS YEAR JEE ADVANCED)|10 Videos
  • VECTOR

    MOTION|Exercise Exercise - 3|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int_(0)^(pi) |cos x| dx

Evaluate the following integral: int_0^(pi//2)x^2cos2x\ dx

Evaluate the following integrals: int_0^(pi//4)|cos2x|dx

Evaluate the following integral: int_0^(pi//2)|sin x-cos x|dx

Evaluate the following integral: int_0^(2pi)cos^7x\ dx

Evaluate the following integrals: int_(0)^(pi//2) (cosx)/(1+cos x+sin x)dx

Evaluate the following integral: int_(0)^( pi/2)(dx)/(4cos x+2sin x)

Evaluate the following integral: int_(pi/6)^( pi/2)(cos ecx cot x)/(1+cos ec^(2)x)dx

Evaluate the following integral: int_0^(pi//2)1/(5cos x+3sinx)dx