Home
Class 12
PHYSICS
What does d|vec(v)|//dt and |d vec(v)//d...

What does `d|vec(v)|//dt` and `|d vec(v)//dt|` represent ? Can these be equal ? Can. (a) `d|vec(v)|//dt = 0` while `|d vec(v)//dt| != 0` (b) `d|vec(v)|//dt != 0` while `|d vec(v)//dt| = 0`?

Text Solution

Verified by Experts

`(d|vecv|)/(dt) ` represents time rate of change of speeds as ` |vecv | = v` ,
while ` |(dvecv)/(dt)|` represents magnitude of acceleration
Promotional Banner

Topper's Solved these Questions

  • ONE DIMENSION MOTION

    MOTION|Exercise EXERCSE -1 (Section - A : Distance, Displacement, Velocity and Acceleration, Equation of Motion )|26 Videos
  • ONE DIMENSION MOTION

    MOTION|Exercise EXERCSE -1 (Section - B : Motion under Gravity)|11 Videos
  • NLM & FRICTION

    MOTION|Exercise EXERCISE-4 ( LEVEL-II)|15 Videos
  • OPTICS

    MOTION|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

(a) What does |(dv)/(dt)| and (d|v|)/(dt) represent? (b) Can these be equal?

(i) What does |(dv)/(dt)| and (d|V|)/(dt) represent ? (ii) Can these be equal ? (iii) Can (d|V)/(dt)= 0 while |(dV)/(dt)ne0 ? (iv) Can (d|V|)/(dt)ne 0 while |(dv)/(dt)|=0 ?

vec(r)=2that(i)+3tvec(2)hat(j) . Find vec(v) and vec(a) where vec(v)=(dvec(r))/(dr) , vec(a)=(dvec(v))/(dt)

Two particles of masses m_(1) and m_(2) in projectile motion have velocities vec(v)_(1) and vec(v)_(2) , respectively , at time t = 0 . They collide at time t_(0) . Their velocities become vec(v')_(1) and vec(v')_(2) at time 2 t_(0) while still moving in air. The value of |(m_(1) vec(v')_(1) + m_(2) vec(v')_(2)) - (m_(1) vec(v)_(1) + m_(2) vec(v)_(2))|

Maxwell’s equation oint vec(E).vec(dl) = (d vec(B).vec(A))/dt is a statement of-

If a ,\ b represent the diagonals of a rhombus, then vec axx vec b= vec0 b. vec adot vec b=0 c. vec adot vec b=1 d. vec axx vec b= vec a

The equation (d^2y)/(dt^2)+b(dy)/(dt)+omega^2y=0 represents the equation of motion for a

The quantity int_(t_(1))^(t_(2)) vec(V) dt represents:

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b