Home
Class 11
MATHS
sqrt(x^(2)-x)>(x-1)...

sqrt(x^(2)-x)>(x-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sqrt(x^(2)-x+1)

Simplify (x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))+(x-sqrt(x^(2)-1))/(x+sqrt(x^(2)-1))

a+1=2sqrt(a)x then (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=

Solve for x if sqrt(x^(2)-x) lt (x-1)

Solve for x if sqrt(x^(2)-x) lt (x-1)

Differentiate log((x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1)))

Simplify : (x + sqrt(x^(2) - 1))/(x - sqrt(x^(2) -1)) + (x - sqrt(x^(2) -1))/(x + sqrt(x^(2) -1)) If the result of the simplification is equal to 14, then find the value of x

y=sqrt((x^(2)+x+1)/(x^(2)-x+1))

int(x^(4)-1)/(x^(2)sqrt(x^(2)+x^(2)+1))dx=sqrt(x^(2)+(1)/(x^(2))+1)+C(sqrt(x^(2)+x^(2)+1))/(x^(2))+C(sqrt(x^(4)+x^(2)+1))/(x)+C(d) none of these

Evaluate int(x-sqrt(x^(2)-1))/(x+sqrt(x^(2)-1))