Home
Class 12
MATHS
If sin^(-1)(1/sqrt(5)) and cos^(-1)(3/sq...

If `sin^(-1)(1/sqrt(5))` and `cos^(-1)(3/sqrt(10))` are angles in `[0,(pi)/(2)]`, then their sum is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

If sin A=(2)/(sqrt(5)) and cos B=(1)/(sqrt(10)), where A and B are acute angles,then what is the value of A+B

In a /_ABC if /_A=sin^(-1)((1)/(sqrt(5)))/_B=cos^(-1)((3)/(sqrt(10))) then

If sin A=(1)/(sqrt(10)) and sin B=(1)/(sqrt(5)), where A and B are positive acute angles,then A+B is equal to

The value of alpha so that sin^(-1)((2)/(sqrt(5))) , sin^(-1)((3)/(sqrt(10))) and sin^(-1)alpha are the angles of a Delta is