Home
Class 12
MATHS
lim(x rarr0)(cos4x-4cos2x+3)/(x^(4))=...

`lim_(x rarr0)(cos4x-4cos2x+3)/(x^(4))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(cos3x-cos5x)/(x^(2))

If lim_(x rarr0)((cos4x+a cos2x+b)/(x^(4))) is finite then the value of a,b respectively is finite

If lim_(x rarr0)(cos4x+a cos2x+b)/(x^(4)) is finite then the value of a,b respectively

If lim_(x rarr0)(cos4x+a cos2x+b)/(x^(4)) is finite,find a and b using expansion formula.

the value of lim_(x rarr0)(cos(sin x)-cos x)/(x^(4)) is equal to:

lim_(x rarr0)(cos ecx-cot x)

lim_(x rarr0)(1-cos4x)/(1-cos6x)

lim_(x rarr0)(1-cos4x)/(1-cos5x)

lim_(x rarr0)(cos(tan x)-cos x)/(x^(4)) is equal to :

Evaluate: lim_(n rarr0)(1-cos(1-cos x))/(x^(4))