Home
Class 12
MATHS
Let the function f'(x)=sin x be one- one...

Let the function `f'(x)=sin x` be one- one and onto. Then a possible domain of `f` is
O `[0,2 pi]`
O `[0,pi]`
O `[-(pi)/(2),(pi)/(2)]`
O ` [-pi, pi]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta=sin^(-1){sin(-600o)} , then one of the possible values of theta is pi/3 (b) pi/2 (c) (2pi)/3 (d) (-2pi)/3

f:[-3 pi,2 pi]f(x)=sin3x

Let f:(-1,1)rarr B be a function defined by f(x)=tan^(-1)[(2x)/(1-x^(2))]. Then f is both one- one and onto when B is the interval.(a) [0,(pi)/(2))(b)(0,(pi)/(2))(c)(-(pi)/(2),(pi)/(2))(d)[-(pi)/(2),(pi)/(2)]

Show that the function f(x)=cot^(-1)(sin x+cos x) is decreasing on (0,pi/4) and increasing on (pi/4,pi/2)

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

show that the function f(x)=sin x is strictly increasing in (0,(pi)/(2)) strictly decreasing in ((pi)/(2),pi)

Range of function f(x)=arccot(2x-x^(2)) is [(pi)/(4),(3 pi)/(3)](b)[0,(pi)/(4)][0,(pi)/(2)] (d) [(pi)/(4),pi]

The equation of the normal to the curve y=sin x at the point (pi,0) is: O x+y=pi O x+y+pi=0 O x-y=pi O x-y+n=0