Home
Class 13
MATHS
If sqrt(9x^2+6x+1)<2-x then...

If `sqrt(9x^2+6x+1)<2-x` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of real values of x satisfying the equation sqrt(x^2 - 6x+9) + sqrt(x^2 - 6x +6) = 1 is (i)0 (ii)1 (iii)2

lim_(x rarr-oo)(x^(2)*sin((1)/(x)))/(sqrt(9x^(2)+x+1)) is equal to

If f(x)=sqrt(x^(2)+6x+9), then f'(x) is equal to 1 for x<-3( b) -1 for x<-3(c)1 for all x in R(d) none of these

lim_(x rarr3)((x^(2)-9-sqrt(x^(2)-6x+9)))/(|x-1|-2)

(1)/(log_(3)(x+1))<(1)/(2log_(9)sqrt(x^(2)+6x+9))

Find the range of f(x)=sqrt(1-sqrt(x^(2)-6x+9))

lim_(x rarr oo)((sqrt(1+25x^(2))+sqrt(9x^(2)-1))/(sqrt(1+25x^(2))-sqrt(9x^(2)-1)))=

Find all possible values of expression sqrt(1-sqrt(x^(2)-6x+9)).

The value of int(dx)/((x^(2)-6x+9)sqrt(x^(2)-6x+4)) is