Home
Class 12
MATHS
Let Z(1) and z(2) be two complex numbers...

Let `Z_(1)` and `z_(2)` be two complex numbers with `z_(1)!=z_(2)` if `|z_(1)|=sqrt(2),` then `|(z_(1)-bar(z)_(2))/(2-z_(1)z_(2))|` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)|+|z_(1)-z_(2)| then

If z_(1) and z_(2) are two complex number such that |z_(1)|<1<|z_(2)| then prove that |(1-z_(1)bar(z)_(2))/(z_(1)-z_(2))|<1

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1, then

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

Let z_(1),z_(2) be two complex numbers such that z_(1)+z_(2) and z_(1)z_(2) both are real, then

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

If z_(1) and z_(2) are unimodular complex numbers that satisfy z_(1)^(2)+z_(2)^(2)=4, then (z_(1)+bar(z)_(1))^(2)+(z_(2)+bar(z)_(2))^(2) equals to