Home
Class 11
MATHS
sin(A+B) =4/5 & sin(A-B) =3/5 Then 1+si...

`sin(A+B) =4/5 & sin(A-B) =3/5` Then `1+sin2A=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a !ABC sin A = 4/5 and sin B = 12/13 , then sin C =

If cos(A-B)=(5)/(13) and sin(A+B)=(4)/(5) , then find sin2B.

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5)) , then which is greater ?

Prove that (1 + sin A) / (cos A) + (cos B) / (1-sin B) = (2sin A-2sin B) / (sin (AB) + cos A-cos B)

If sin B=(sin(2A+B))/(5) then (tan(A+B))/(tan A)=?

If cos A =(5)/(13) , and sin B=(4)/(5) , find sin (A+B), where A,B,(A+B) are positive acute angles.

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

sin 2A + sin 2B + sin 2 (A-B)= A) 4 sin A * sin B * sin (A-B) B) 4 sin A * cos B * cos (A-B) C) 4 cos A * sin B * cos (A-B) D) 4 cos A * cos B * sin (A-B)