Home
Class 12
MATHS
The limit lim(x rarr2)(log(e)(x-2))/(log...

The limit `lim_(x rarr2)(log_(e)(x-2))/(log_(6)(e^(x)-e^(2)))` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(log_(e)(1+x))/(x)

Evaluate: lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a)))

"lim_(x rarr0)(log_(e)(1+(x)/(2)))/(x)

The value of lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a))) is

lim_(x rarr0)(e^(x)-log_(e)(ex+e))/(x)

lim_(x rarr2)((e^(x)-e^(2))/(x-2))

Evaluate lim_(x rarr0)(log_(e)x)/(x-1)

lim_ (x rarr oo) (log_ (e) x) / (x)

lim_(x rarr 0) (log(1+x))/(3^x-1)=1/(log_(e)(3))

lim_(xrarre) (log_(e)x-1)/(|x-e|) is