Home
Class 12
MATHS
The parabolas y^(2)=4x and x^(2)=4y divi...

The parabolas `y^(2)=4x and x^(2)=4y` divide the square region bounded by the lines x=4, y=4 and the coordinate axes. If `S_(1),S_(2),S_(3)` are the areas of these parts numbered from top to bottom, respectively, then

Promotional Banner

Similar Questions

Explore conceptually related problems

The parabola x^2=4y and y^2=4x divide the square region bounded by the lines x=4 , y=4 and the coordinate axes. If S_1, S_2, S_3 are respectively the areas of these parts numbered from top to bottom, then S_1 : S_2 : S_3 is (A) 2:1:2 (B) 1:2:1 (C) 1:2:3 (D) 1:1:1

Find the area of the regions bounded by the parabola y^2=4ax and the line x=a.

The area of the region bounded by the lines y=2x+1y=3x+1 and x=4 is

Find the area of the region bounded by the parabola x^(2)=4y and the line x=4y-2

Find the area of the region bounded by the parabola y^2=4ax and the line x=a.

Find the area of the region bounded by the parabola y^(2)=2x and the line x-y=4

The area of the region bounded by the parabola y^(2)=4ax and the line y=mx is

Prove that the curves y^(2)=4x and x^(2)=4y divide the area of square bounded by x=0,x=4,y=4 and y=0 into three equal parts.