Home
Class 12
MATHS
Prove:int0^(pi//2) \ log|tanx| \ dx=0...

Prove:`int_0^(pi//2) \ log|tanx| \ dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi//2)log(tanx)dx

int_0^(pi/2) log|tanx+cotx|dx =

int_(0)^(pi//2)log(tanx)dx=

Prove that: int_0^(pi//2)log|tanx+cotx|dx=pi(log)_e2

int_0^(pi/2)sin2x log(tanx)dx

int_(0)^(pi//2)log(tanx+cotx)dx=

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

Prove that int_0^(pi//2) sin 2x log tanx dx=0

int_(0)^((pi)/(2))log(tanx)dx=0