Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^3...

If `alpha,beta,gamma` are the roots of `x^3+px^2+qx+r = 0 ` then `sumalpha^2beta^2=` (i)`q^2-2pr` (ii)`q^2+2pr` (iii) `q+2pr` (iv) `q-2pr`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha ,beta, gamma be the roots of x^3+px^2+qx+r=0 then find sumalpha^3

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

Let , alpha ,beta,gamma be the roots of x^3+px^2+qx+r=0 . Then find the (i) sumalpha^2

If alpha, beta, gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha^(2) (beta + gamma) =

If alpha, beta , gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha, beta, gamma are roots of the equation x^(3) - px^(2) + qx - r = 0 , then sum alpha^(2) beta =

If alpha, beta, gamma are the roots of the equatiion x^(3)-px^(2)+qx-r=0 find sumalpha^(2) beta

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum(alpha - beta )^(2) =