Home
Class 10
MATHS
The value of the expression (cos^(2)23^(...

The value of the expression `(cos^(2)23^(@)-sin^(2)67^(@))` is

A

`1`

B

`2`

C

`3`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^2(23^\circ) - \sin^2(67^\circ) \), we can follow these steps: ### Step 1: Rewrite the sine term using the co-function identity We know that: \[ \sin(67^\circ) = \cos(90^\circ - 67^\circ) = \cos(23^\circ) \] Thus, we can rewrite \( \sin^2(67^\circ) \) as: \[ \sin^2(67^\circ) = \cos^2(23^\circ) \] ### Step 2: Substitute the sine term in the expression Now we can substitute \( \sin^2(67^\circ) \) in the original expression: \[ \cos^2(23^\circ) - \sin^2(67^\circ) = \cos^2(23^\circ) - \cos^2(23^\circ) \] ### Step 3: Simplify the expression Now, simplifying the expression gives us: \[ \cos^2(23^\circ) - \cos^2(23^\circ) = 0 \] ### Conclusion The value of the expression \( \cos^2(23^\circ) - \sin^2(67^\circ) \) is: \[ 0 \]

To solve the expression \( \cos^2(23^\circ) - \sin^2(67^\circ) \), we can follow these steps: ### Step 1: Rewrite the sine term using the co-function identity We know that: \[ \sin(67^\circ) = \cos(90^\circ - 67^\circ) = \cos(23^\circ) \] Thus, we can rewrite \( \sin^2(67^\circ) \) as: ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE GEOMETRY

    NCERT EXEMPLAR|Exercise Coordinate Geometry|58 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    NCERT EXEMPLAR|Exercise Exercise 3.3 Short Answer Type Questions|2 Videos

Similar Questions

Explore conceptually related problems

The value of the expression (2(sin1^(@)+sin2^(@)+sin3^(@)+...+sin89^(@)))/(2(cos1^(@)+cos2^(@)+...+cos44^(@))+1) equals

The value of the expression (sin80^(@)-cos80^(@)) is negative.

If sin A + sin^2 A = 1 , then the value of the expression (cos^2A+ cos^4 A) is

The value of the expression cos^(6)theta+sin^(6)theta+3sin^(2)theta cos^(2)theta=

The value of the expression (2(sin1^(0)+sin2^(0)+sin3^(0)+...+sin89^(@)))/(2(cos1^(0)+cos2^(0)+...+cos44^(0))+1) equals

Minimum value of the expression (1)/(cos^(2)((pi)/(4)+x)+sin^(2)((pi)/(4)-x))

The value of the expression sin^(6)theta+cos^(6)theta+3sin^(2)theta*cos^(2)theta equals

The value of the expression (cos^(6)theta+sin^(6)theta-1)(tan^(2)theta+cot^(2)theta+2) is :

If the value of expression (2cos10^(@)-cos50^(@))/(sin70^(@)-cos80^(@)) is m then (3m^(2)-4) is equal to

What is the value of (cos^(2)67^(@)-sin^(2)23^(@))?

NCERT EXEMPLAR-INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS-Introduction To Trigonometry And Its Applications
  1. A pole 6 m high casts a shadow 2sqrt 3 m long on the ground, then find...

    Text Solution

    |

  2. value of (tan47^(@))/(cot 43^(@))=

    Text Solution

    |

  3. The value of the expression (cos^(2)23^(@)-sin^(2)67^(@)) is

    Text Solution

    |

  4. The value of the expression (sin80^(@)-cos80^(@)) is negative.

    Text Solution

    |

  5. sqrt((1-cos^(2)theta)sec^(2)theta)=tan theta

    Text Solution

    |

  6. If cosA+cos^2A=1 , then sin^2A+sin^4A= -1 (b) 0 (c) 1 (d) None of ...

    Text Solution

    |

  7. (tantheta+2)(2 tantheta+1)= ?

    Text Solution

    |

  8. If the length of the shadow of a tower is increasing, then the angle o...

    Text Solution

    |

  9. If a man standing on a platform 3 m above the surface of a lake observ...

    Text Solution

    |

  10. The value of 2sintheta can be a+1/a, where a is a positive number and ...

    Text Solution

    |

  11. costheta=(a^(2)+b^(2))/(2ab), where a and b are two distinct numbers s...

    Text Solution

    |

  12. The angle of elevation theta of the top of a tower is 30^(@). If the h...

    Text Solution

    |

  13. If the height of a tower and the distance of the point of observation ...

    Text Solution

    |

  14. Prove that (sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec...

    Text Solution

    |

  15. (tanA)/(1+secA) - (tanA)/(1-secA) = 2cosecA

    Text Solution

    |

  16. If tan A=3/4, then sinAcosA =.

    Text Solution

    |

  17. (sinalpha + cosalpha)(tanalpha + cotalpha) = secalpha + cosecalpha

    Text Solution

    |

  18. Prove that (sqrt(3)+1)(3-cot30^@)=tan^3(60)^@-2sin60^@

    Text Solution

    |

  19. Show that 1+cot^2alpha/(1+cosecalpha)=cosec alpha

    Text Solution

    |

  20. tantheta+tan(9 0^(@)-theta)=secthetaxxsec(9 0^(@)-theta)

    Text Solution

    |