Home
Class 12
MATHS
x sqrt(1+y)+y sqrt(1+x)=0rArr(dy)/(dx)=...

x sqrt(1+y)+y sqrt(1+x)=0rArr(dy)/(dx)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

x = (1-sqrt(y))/(1+sqrt(y)) rArr(dy)/(dx) is equal to

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

x sqrt(1 + y) + y sqrt(1 + x) =0implies (dy)/(dx)=

If sqrt(x) + sqrt(y) = sqrt(a) , then (dy)/(dx) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt(a))

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=

If x sqrt(1+y)+y sqrt(1+x)=0 and x!=y ,then (1+x)^(2)(dy)/(dx)+(3)/(2)=