Home
Class 12
MATHS
Prove that: inta^b(f(x))/(f(x)+f(a+b-x...

Prove that: `int_a^b(f(x))/(f(x)+f(a+b-x))dx=(b-a)/2`

Text Solution

AI Generated Solution

To prove that \[ \int_a^b \frac{f(x)}{f(x) + f(a + b - x)} \, dx = \frac{b - a}{2}, \] we will use a substitution method. ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Evaluate each of the following integral: int_a^b(f(x))/(f(x)+f(a+b-x))dx

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx. Hence evaluate : int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.

int_a^b[d/dx(f(x))]dx

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

If a, b (altb) be the points of discontinuity of function f(f(f(x))) , where f(x)=1/(1-x),x!=1 , then int_a^b f(x)/(f(x)+f(1-x))dx= (A) 0 (B) 1/2 (C) 1 (D) 2

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If int_(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=10 , then (a, b) can have the values

If int_(a)^(b)(f(a+b-x))/(f(x)+f(a+b-x))dx=4 , then (a, b) can have the values

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx