Home
Class 11
MATHS
If sin(theta+alpha)=aa n dsin(theta+beta...

If `sin(theta+alpha)=aa n dsin(theta+beta)=b ,` prove that `cos2(alpha-beta)-4a bcos(alpha-beta)=1-2a^2-2b^2`

Text Solution

Verified by Experts

Given that, ` sin(theta+alpha)=a`
and `" "sin(theta+beta)=b" "...(i)`
`therefore" "cos(theta+alpha)=sqrt(1-a^(2)) and cos(theta+beta)=sqrt(1-b^(2))" "...(ii)`
`therefore" "cos(alpha-beta)=cos{theta+alpha-(theta+beta)}`
`" "=cos(theta+beta)cos(theta+alpha)+sin(theta+alpha)sin(theta+beta)`
`" "=sqrt(1-a^(2))sqrt(1-b^(2))+a*b=ab+sqrt((1-a)^(2)(1-b)^(2))`
` " "=ab+sqrt(1-a^(2)-b^(2)+a^(2)b^(2))`
and `" "cos(alpha-beta)=ab+sqrt(1-a^(2)-b^(2)+a^(2)b^(2))`
`" "=cos2(alpha-beta)-4abcos(alpha-beta)`
`" "=2cos^(2)(alpha-beta)-1-4abcos(alpha-beta)`
`" "= 2cos(alpha-beta)(cosalpha-beta-2ab)-1`
`" "=2(ab+sqrt(1-a^(2)-b^(2) +a^(2)b^(2)))(ab+sqrt(1-a^(2)-b^(2)+a^(2)b^(2))-2ab)-1`
`" "=2[(sqrt(1-a^(2)-b^(2)+a^(2)b^(2) +ab))(sqrt(1-a^(2)-b^(2)+a^(2)b ^(2))-ab)]-1`
`" "=2[1-a^(2)-b^(2)+a^(2)b^(2)-a^(2)b^(2)]-1`
`" "=2-2a^(2)-2b^(2)-1`
`" "=1-2a^(2)-2b^(2)" "` Hence proved.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If sin(theta+alpha)=a and sin(theta+beta)=b, prove that cos2(alpha-beta)-4ab cos(alpha-beta)=1-2a^(2)-2b^(2)

s(theta-alpha)=a and cos(theta-beta)=b, then sin^(2)(alpha-beta)+2ab cos(alpha-beta)=

Knowledge Check

  • If cos (theta-alpha)=a and cos (theta-beta) =b, then sin^2(alpha-beta)+2ab cos(alpha-beta) is equal to

    A
    `a^2+b^2`
    B
    `a^2-b^2`
    C
    `b^2-a^2`
    D
    `-a^2-b^2`
  • If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

    A
    `4a ^(2) b ^(2)`
    B
    `a^(2) -b^(2)`
    C
    `a ^(2) +b^(2)`
    D
    `-a^(2) b^(2)`
  • It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is sin^(2)(alpha-beta)+2abcos(alpha-beta) equal to ?

    A
    `a^(2)+b^(2)`
    B
    `a^(2)-b^(2)`
    C
    `b^(2)-a^(2)`
    D
    `-(a^(2)+b^(2))`
  • Similar Questions

    Explore conceptually related problems

    If cos(theta-alpha)=a,sin(theta-beta)=b, prove that a^(2)-2ab sin(alpha-beta)+b^(2)=cos^(2)(alpha-beta)

    If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(alpha-beta)+2ab cos(alpha-beta)

    If cos(theta-alpha)=p and sin(theta+beta)=q show that p^(2)+q^(2)-2pq sin(alpha+beta)=cos^(2)(alpha+beta)

    If cos ( theta - alpha ) = a, cos ( theta - beta ) =b , then sin^(2) ( alpha - beta ) + 2ab cos ( alpha - beta)=

    If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)