Home
Class 11
MATHS
If sinx+cosx=a, then (i) sin^(6)x+cos...

If `sinx+cosx=a`, then
(i) `sin^(6)x+cos^(6)x=.....`
(ii) `abs(sinx-cosx)=.....`

Text Solution

Verified by Experts

Given that, `sinx+cosx=a`
On squaring both sides, we get
`" "(sinx+cosx)^(2)=(a)^(2)`
`rArr" "sin^(2)x+cos^(2)x+2sinxcosx=a^(2)`
`rArr" "sinx*cosx=(1)/(2)(a^(2)-1)`
`(i) sin^(6)x+cos^(6)x=(sin^(2)x)^(3)+(cos^(2)x)^(3)`
`" "=(sin^(2)x+cos^(2)x)(sin^(4)x-sin^(2)xcos^(2)x+cos^(4)x)` ltBrgt `" "=sin^(4)x+cos^(4)x-(1)/(4)(a^(2)-1)^(2)`
`" "=(sin^(2)x+cos^(2)x)^(2)-2sin^(2)xcos^(2)x-(1)/(4)(a^(2)-1)^(2)`
`" "=1-2*(1)/(4)(a^(2)-1)^(2)-(1)/(4)(a^(2)-1)^(2)=(1)/(4)[4-3(a^(2)-1)^(2)]`
`(ii) abs(sinx-cosx)=sqrt((sinx-cosx)^(2))`
`" "=sqrt(sin^(2)x+cos^(2)x-2sinxcosx)`
`" "=sqrt(1-2(1)/(2)(a^(2)-1))=sqrt(1-a^(2)+1)=sqrt(2-a^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If sinx - cosx = 0, then the value of (sin^3 x-cos^3 x) is: यदि sinx - cosx = 0 ,तो (sin^3 x-cos^3 x) मान होगा :

If 2cosx+sinx=1 , then find 7cosx+6sinx

Knowledge Check

  • If sinx+cosx=c , then sin^(6)x+cos^(6)x is equal to

    A
    `(1+6c^(2)-3c^(4))/(16)`
    B
    `(1+6c^(2)-3c^(4))/(4)`
    C
    `(1+6c^(2)+3c^(4))/(16)`
    D
    `(1+6c^(2)+3c^(4))/(4)`
  • If 8sinx- 4 = cos.x, the values of sinx are

    A
    `3/5, (-5)/13`
    B
    `(-3)/5, (-5)/13`
    C
    `3/5 , 5/13`
    D
    `5/3 , 5/13`
  • If Bsinx- 4 = cos.x, the values of sinx are

    A
    `3/5, (-5)/13`
    B
    `(-3)/5, (-5)/13`
    C
    `3/5 , 5/13`
    D
    `5/3 , 5/13`
  • Similar Questions

    Explore conceptually related problems

    ((sinx - cosx)/(sinx + cosx))

    The value of |(cos(x-a), cos(x+a), cosx),(sin(x+a), sin(x-a), sinx),(cosatanx, cosacotx, cotx)|= (A) 1 (B) sina cosa (C) 0 (D) sinx cosx

    Show that, sin3x + cos3x = (cosx-sinx)(1+4sinx cosx)

    3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

    int(cos2x)/(sinx+cosx)dx=