Home
Class 11
MATHS
Given xgt 0, then value of f(x)=-3cossqr...

Given x`gt` 0, then value of `f(x)=-3cossqrt(3+x+x^(2))` lie in the interval ….. .

Text Solution

AI Generated Solution

To find the interval in which the function \( f(x) = -3 \cos(\sqrt{3 + x + x^2}) \) lies for \( x > 0 \), we can follow these steps: ### Step 1: Determine the range of the cosine function The cosine function, \( \cos(x) \), has a range of values between -1 and 1 for all real numbers \( x \). Thus, we can express this mathematically as: \[ -1 \leq \cos(\sqrt{3 + x + x^2}) \leq 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

The value of f(x)=3sin sqrt(((pi^(2))/(16)-x^(2))) lie in the interval

The values of x satisfying x^("log"_(5)) gt5 lie in the interval

STATEMENT-1: The values of f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) lie in the interval [0,(3)/(sqrt(3))]. and STATEMENT-2The domain of definition of the function f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) is [-(pi)/(4),(pi)/(4)]

the value of the function f(x)=(x^(2)-3x+2)/(x^(2)+x-6) lies in the interval.

Find the value of c, of mean value theorem.when (a) f(x) = sqrt(x^(2)-4) , in the interval [2,4] (b) f(x) = 2x^(2) + 3x+ 4 in the interval [1,2] ( c) f(x) = x(x-1) in the interval [1,2].

The maximum and minimum value of f(x) =ab sin x +b sqrt(1-a^(2)) cos x + c lie in the interval (assuming |a| lt 1, b gt 0 )

If x is real then the values of (x^(2) + 34 x - 71)/(x^(2) + 2x - 7) does not lie in the interval