Home
Class 11
MATHS
If "cosec"x=1+cotx, then x=2npi,2npi+(pi...

If `"cosec"x=1+cotx`, then `x=2npi,2npi+(pi)/(2)`

Text Solution

Verified by Experts

True
Given that, `" ""cosec"x=1+cotx`
`rArr" "(1)/(sinx)=1+(cosx)/(sinx)rArr(1)/(sinx)=(sinx+cosx)/(sinx)`
`rArr" "sinx+cosx=1`
`rArr" "(1)/(sqrt(2))*sinx+(1)/(sqrt(2))*cosx=(1)/(sqrt(2))`
`rArr" "sin""(pi)/(4)sinx+cosxcos""(pi)/(4)=(1)/(sqrt(2))`
`rArr" "cos(x-(pi)/(4))=cos""(pi)/(4)`
`therefore" "x-(pi)/(4)=2npipm(pi)/(4)`
For positive sign, `" "x=2npi+(pi)/(4)+(pi)/(4)=2npi+(pi)/(2)`
For negative sign, `" "x=2npi-(pi)/(4)+(pi)/(4)=2npi`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise FILLERS|7 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If: cotx + cot(pi/4 +x)=2 , then: x=

If y=("cosec "x+cotx) , prove that (sinx)(d^(2)y)/(dx^(2))-y^(2)=0.

The roots of the equation, cotx- cos x=1- cotx*cos x are : (i)npi+pi/4 (ii)2npi+pi/4 (iii)npi+pi/4 or 2npi+-pi (iv) (4n+1)pi/4 or(2n+1)pi; n in I

Prove that funciton given by (i) f(x)=x^(2) is (a) Strictly increasing in x in (0,oo) (b) Strictly decreasing in x in (-oo,0) (ii) f(x)=tan x is strictly increasing in x in (npi-(pi)/(2),n pi+(pi)/(2)) , where n in I .

The general solution ofthe trigonometrical equation sinx+cosx=1 for n=0, +- 1, +-1 is given by (a) x=2npi (b) x=2npi+pi/2 (c) x=npi+(-1)^npi/4-pi/4 (d) non of these

If x+y=pi/4a n dtanx+tany=1,t h e n(n in Z) (a)sinx=0a l w a y s (b)when x=npi+pi/4t h e ny=-npi (c)when x=npit h e ny=npi+(pi/4) (d)when x=npi+pi/4t h e ny=npi-(pi/4)

If x= npi+(-1)^(n)alpha , n in I and x=npi+(-1)^(n)beta are the roots of 4 cos x -3 sec x =tan x , then 4(sin alpha + sin beta ) is