Home
Class 11
MATHS
If o be the sum of odd terms and E that ...

If `o` be the sum of odd terms and `E` that of even terms in the expansion of `(x+a)^n` prove that: `O^2-E^2=(x^2-a^2)^n` (ii) `4O E=(x+a)^(2n)-(x-a)^(2n)` (iii) `2(O^2+E^2)=(x+a)^(2n)+(x-a)^(2n)`

Text Solution

Verified by Experts

(i) Given expansin is `(x + a)^(n)`
`:. (x + a)^(n) = .^(n)C_(0) x^(n) a^(0) + .^(n)C_(1) x^(n - 1) a^(1) + .^(n)C_(2) x^(n - 2) a^(2) + .^(n)C_(3) x^(n - 3) a^(3) + .... + .^(n)C_(n) a^(n)`
Now, sum of odd terms
i.e., `O = .^(n)C_(0) x^(n) + .^(n)C_(2) x^(n - 2) a^(2) +....`
i.e., `E = .^(n)C_(1) x^(n - 1) a + .^(n)C_(3) x^(n - 3) a^(3) +`.....
`:. (x + a)^(n) = O + E`....(i)
Similarly `(x - a)^(n) = O - E` .....(ii)
`.: (O + E) (O - E) = (x + a)^(n) (x - a)^(n)` [on multiplying Eqs. (i) and (ii)]
`rArr O^(2) - E^(2) = (x^(2) - a^(2))^(n)`
(ii) `4 OE = (O + E)^(2) - (O - E)^(2) = [(x + a)^(n)]^(2) - [(x - a)^(n)]^(2)` [from Eqs. (i) and (ii)]
`= (x + a)^(2n) - (x - a)^(2n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise Objective type question|16 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos

Similar Questions

Explore conceptually related problems

If o be the sum of odd terms and E that of even terms in the expansion of (x+a)^(n) prove that: O^(2)-E^(2)=(x^(2)-a^(2))^(n)( (i) 4OE=(x+a)^(2n)-(x-a)^(2n)( iii) 2(O^(2)+E^(2))=(x+a)^(2n)+(x-a)^(2n)

If A be the sum of odd terms and B the sum of even terms in the expnsion of (x+a)^n, show that 4AB= (x+a)^(2n)-(x-a)^(2n)

If the sum of odd terms and the sum of even terms in the expansion of (x+a)^(n) are p and q respectively then p^(2)-q^2=

n th term in the expansion of (x+(1)/(x))^(2n)

The number of terms in the expansion of (1+2x+x^2)^n is :

In the expansion of (x+a)^(n) if the sum of odd terms is P and the sum of even terms is Q then (a)P^(2)-Q^(2)=(x^(2)-a^(2))^(n)(b)4PQ=(x+a)^(2n)-(x-a)^(2n)(c)2(P^(2)+Q^(2))=(x+a)^(2n)+(x-a)^(2n) (d)none of these

If A and B are the sums of odd and even terms respectively in the expansion of (x+a)^(n) tehn (x+a)^(2n)-(x-a)^(2n)=