Home
Class 11
MATHS
If the middle term in the binomial expan...

If the middle term in the binomial expansion of `(1/x+xsinx^(10))` is equal to `(63)/8,` find the value of `xdot`

A

`2n pi + (pi)/(6)`

B

`n pi + (pi)/(6)`

C

`n pi + (-1)^(n) (pi)/(6)`

D

`n pi + (-1)^(n) (pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given expansion is `((1)/(x) + x sin x)^(10)`
Since, `n = 10` is even, so this expansion has only one middle term i.e., 6 th term.
`:. T_(6) = T_(5 + 1) = .^(10)C_(s) ((1)/(x))^(10 - 5) (x sin x)^(5)`
`rArr (63)/(8) = .^(10)C_(5) x^(-5) x^(5) sin^(5) x`
`rArr (63)/(8) = (10.9.8.7.6.5!)/(5.4.3.2.1.5!) sin^(5) x`
`rArr (63)/(8) = 2.9.2.7. sin^(5) x`
`rArr sin^(5) x = (1)/(32)`
`rArr sin^(5) x = ((1)/(2))^(5)`
`rArr sin x = (1)/(2)`
`:. x = n pi + (-1)^(n) pi//6`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise True/False|7 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR|Exercise Long Answer type question|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos

Similar Questions

Explore conceptually related problems

If the middle term in the binomial expansion of ((1)/(x)+x sin x^(10)) is equal to (63)/(8), find the value of x.

If the middle term in the binomial expansion of ((1)/(x) + x sin x )^(10) is ( 63)/( 8) , then the value of 6sin^(2) x +sin x -2 is

Find the middle term in the expansion of (x +1/x)^4

Find the middle term in the expansion of (1+x)^(2n)

If the middle term in the expansion of ((1)/(x)+x sinx)^(10) is equal to 7(7)/(8) , then the number of values of x in [0, 2pi] is equal to

Find the middle term in the expansion of (x- 1/(2x))^12