Home
Class 11
MATHS
Evaluate lim(xto 1//2) ((4x^(2)-1))/((2x...

Evaluate `lim_(xto 1//2) ((4x^(2)-1))/((2x-1))`.

A

2

B

3

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{1}{2} \) into the expression First, we can substitute \( x = \frac{1}{2} \) directly into the expression to see if we get a determinate form. \[ 4\left(\frac{1}{2}\right)^2 - 1 = 4 \cdot \frac{1}{4} - 1 = 1 - 1 = 0 \] \[ 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0 \] Since both the numerator and denominator evaluate to 0, we have an indeterminate form \( \frac{0}{0} \). We need to simplify the expression. ### Step 2: Factor the numerator The numerator \( 4x^2 - 1 \) can be factored using the difference of squares: \[ 4x^2 - 1 = (2x - 1)(2x + 1) \] Now, we can rewrite the limit: \[ \lim_{x \to \frac{1}{2}} \frac{(2x - 1)(2x + 1)}{2x - 1} \] ### Step 3: Cancel the common factors Since \( 2x - 1 \) is a common factor in both the numerator and the denominator, we can cancel it out (as long as \( x \neq \frac{1}{2} \)): \[ \lim_{x \to \frac{1}{2}} (2x + 1) \] ### Step 4: Substitute \( x = \frac{1}{2} \) again Now we can substitute \( x = \frac{1}{2} \) into the simplified expression: \[ 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} = 2 \]

To evaluate the limit \( \lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{1}{2} \) into the expression First, we can substitute \( x = \frac{1}{2} \) directly into the expression to see if we get a determinate form. \[ 4\left(\frac{1}{2}\right)^2 - 1 = 4 \cdot \frac{1}{4} - 1 = 1 - 1 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto-2^(+)) (x^(2)-1)/(2x+4).

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).

Evaluate lim_(xto1)(x^(2)-3x+2)/(x-1)

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate lim_(xto1) (x^(4)-sqrt(4))/(sqrt(x)-1) .

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate: lim_(xto0)((1+x)^(6)-1)/((1+x)^(2)-1)

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)