Home
Class 11
MATHS
Given, lim(xto0) (sin3x)/(sin7x)....

Given, `lim_(xto0) (sin3x)/(sin7x)`.

A

`3/5`

B

`3/7`

C

`1/5`

D

`7/3`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} \), we can use the standard limit property that states: \[ \lim_{x \to 0} \frac{\sin kx}{kx} = 1 \] for any constant \( k \). ### Step-by-Step Solution: 1. **Rewrite the limit**: We can express the limit in a form that allows us to apply the standard limit property. \[ \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{3x}{7x} \cdot \frac{7x}{\sin 7x} \] 2. **Separate the limit**: Now we can separate the limit into three parts: \[ = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \lim_{x \to 0} \frac{3x}{7x} \cdot \lim_{x \to 0} \frac{7x}{\sin 7x} \] 3. **Evaluate each limit**: - For the first limit: \[ \lim_{x \to 0} \frac{\sin 3x}{3x} = 1 \] - For the second limit: \[ \lim_{x \to 0} \frac{3x}{7x} = \frac{3}{7} \] - For the third limit: \[ \lim_{x \to 0} \frac{7x}{\sin 7x} = 1 \] 4. **Combine the results**: \[ \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} = 1 \cdot \frac{3}{7} \cdot 1 = \frac{3}{7} \] ### Final Result: Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} = \frac{3}{7} \]

To evaluate the limit \( \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} \), we can use the standard limit property that states: \[ \lim_{x \to 0} \frac{\sin kx}{kx} = 1 \] for any constant \( k \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xto0)(sin 3x)/(sin 7x)

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(x rarr0)(sin3x+7x)/(4x+sin2x)

Find the limits of the following: (i)lim_(xto0) (sin3x)/(x)" "(ii)lim_(xto0) (sin7x)/(sin4x)" "(iii)lim_(xto0) (1-cos^(2)x)/(x^(2))

What is lim_(xto0) (sin2x+4x)/(2x+sin4x) equal to ?

Evaluate lim_(xto0) (sinx-x)/(x^(3)).