Home
Class 11
MATHS
Eavaluate lim(x to 0) (sin^(2)2x)/(sin^(...

Eavaluate `lim_(x to 0) (sin^(2)2x)/(sin^(2)4x)`

A

`1/2`

B

`1`

C

`1/4`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin^2(2x)}{\sin^2(4x)} \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit expression: \[ \lim_{x \to 0} \frac{\sin^2(2x)}{\sin^2(4x)} = \lim_{x \to 0} \left( \frac{\sin(2x)}{2x} \cdot \frac{2x}{4x} \cdot \frac{4x}{\sin(4x)} \right)^2 \] ### Step 2: Split the limit We can split the limit into three parts: \[ = \lim_{x \to 0} \left( \frac{\sin(2x)}{2x} \right)^2 \cdot \left( \frac{2x}{4x} \right)^2 \cdot \lim_{x \to 0} \left( \frac{4x}{\sin(4x)} \right)^2 \] ### Step 3: Evaluate each limit 1. **First limit**: \[ \lim_{x \to 0} \frac{\sin(2x)}{2x} = 1 \] Therefore, \( \left( \lim_{x \to 0} \frac{\sin(2x)}{2x} \right)^2 = 1^2 = 1 \). 2. **Second limit**: \[ \frac{2x}{4x} = \frac{1}{2} \quad \text{(this is constant)} \] Therefore, \( \left( \frac{1}{2} \right)^2 = \frac{1}{4} \). 3. **Third limit**: \[ \lim_{x \to 0} \frac{4x}{\sin(4x)} = 1 \] Therefore, \( \left( \lim_{x \to 0} \frac{4x}{\sin(4x)} \right)^2 = 1^2 = 1 \). ### Step 4: Combine the results Now, we combine all the results: \[ \lim_{x \to 0} \frac{\sin^2(2x)}{\sin^2(4x)} = 1 \cdot \frac{1}{4} \cdot 1 = \frac{1}{4} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin^2(2x)}{\sin^2(4x)} = \frac{1}{4} \]

To evaluate the limit \( \lim_{x \to 0} \frac{\sin^2(2x)}{\sin^2(4x)} \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit expression: \[ \lim_{x \to 0} \frac{\sin^2(2x)}{\sin^2(4x)} = \lim_{x \to 0} \left( \frac{\sin(2x)}{2x} \cdot \frac{2x}{4x} \cdot \frac{4x}{\sin(4x)} \right)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

Evaluate lim_(x to 0) ("sin"^(2) ax)/("sin"^(2) bx)

Evaluate lim_(x to 0) ("sin"(5x)/(4))/(x^(2))

lim_(x rarr0)(sin^(2)x-x^(2))/( sin^(2)x)

lim_(x rarr0)(2sin^(2)4x)/(x^(2))

lim_(x rarr0)(x^(2)sin^(2)x)/(x^(2)-sin^(2)x)