Home
Class 11
MATHS
Evaluate, lim(xto(pi//4)) (sinx-cosx)/(x...

Evaluate, `lim_(xto(pi//4)) (sinx-cosx)/(x-pi/4)`

A

`sqrt(2)`

B

`2`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}, \] we first substitute \( x = \frac{\pi}{4} \) into the expression: \[ \sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0, \] and \[ x - \frac{\pi}{4} = \frac{\pi}{4} - \frac{\pi}{4} = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). To resolve this, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form of type \( \frac{0}{0} \), we can take the derivative of the numerator and the derivative of the denominator. 1. **Differentiate the numerator**: The derivative of \( \sin x - \cos x \) is \( \cos x + \sin x \). 2. **Differentiate the denominator**: The derivative of \( x - \frac{\pi}{4} \) is \( 1 \). Now we can rewrite the limit using L'Hôpital's Rule: \[ \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}} = \lim_{x \to \frac{\pi}{4}} \frac{\cos x + \sin x}{1}. \] Next, we substitute \( x = \frac{\pi}{4} \) into the new limit: \[ \cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2}. \] Thus, the limit evaluates to: \[ \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}} = \sqrt{2}. \] **Final Answer:** \[ \sqrt{2}. \]

To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}, \] we first substitute \( x = \frac{\pi}{4} \) into the expression: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate, lim_(xto(pi//6)) (sqrt(3)sinx-cosx)/(pi-pi/6)

Evaluate lim_(xrarr(pi)/(4))((sinx-cosx))/((x-(pi)/(4))).

Evaluate: lim_(xrarr(pi)/(4)) (sin x -cos x)/(x-(pi)/(4))

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto pi//2) tanxlogsinx

Evaluate lim_(x to (pi)/(4)) (1 - tanx)/(x - (pi)/(4))

Evaluate lim_(xto pi//2) (sinx-(sinx)^(sinx))/(1-sinx+log_(e)sinx) .

Evaluate lim_(xto (pi^(-))/(2)) (cosx)^(cosx).

Evaluate lim_(xto pi) (sin^(-1)(1+cosx).sec((x)/(2)))/((x-pi)).

Evaluate lim_(xrarr(pi)/(6))((sqrt3sinx-cosx))/((x-(pi)/(6))).