Home
Class 12
MATHS
x(dy)/(dx)-2y=x^2+sin\ 1/(x^2), x gt0...

`x(dy)/(dx)-2y=x^2+sin\ 1/(x^2), x gt0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the differential equation: x(dy)/(dx)-2y=x^2+sin(1/x^2),x>0

(dy/dx)+(y/x)=sin x^(2)

(d^(2)y)/(dx^(2))=x^(2)sin x, givenatx =0 if y=0,(dy)/(dx)=1

A solution curve of the differential equation (x^(2)+xy+4x+2y+4)(dy)/(dx)-y^(2)=0, x gt0 , passes through the point (1, 3). Then the solution curve-

If y(x) is the solution of the differential equation ( dy )/( dx) +((2x+1)/(x))y=e^(-2x), x gt 0 , where y(1) = (1)/(2) e^(-2) , then

If y(x) is the solution of the differential equation ( dy )/( dx) +((2x+1)/(x))y=e^(-2x), x gt 0 , where y(1) = (1)/(2) e^(-2) , then

(dy/dx)+(2/x)y=sinx , x gt 0

Ify,=sqrt(((1+cos x)/(2))), provethat (dy)/(dx)=-(1)/(2)(sin x)/(2) If y,=sqrt((1+sin x)/(1-sin x)), prove that cos x(dy)/(dx)=y

Solution of the differential equation (x+y(dy)/(dx))/(y-x(dy)/(dx))=(x sin^(2)(x^(2)+y^(2)))/(y^(3))