Home
Class 11
MATHS
If (costheta+cos2theta)^3=cos^3theta+cos...

If `(costheta+cos2theta)^3=cos^3theta+cos^3 2theta,` then the least positive value of `theta` is equal to `pi/6` (b) `pi/4` (c) `pi/3` (d) `pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos theta+cos2 theta)^(3)=cos^(3)theta+cos^(3)2 theta, then the least positive value of theta is equal to (pi)/(6) (b) (pi)/(4)( c) (pi)/(3)( d) (pi)/(2)

If cos theta cos 2 theta cos 3theta = 1//4 for 0 lt theta lt pi then theta =

The solution of costheta.cos2theta.cos3theta=1/4,0 lt theta lt pi/4 is:

If sin^(22)theta+cos^(42)theta=(3)/(4) where theta in[0,(pi)/(2)] then find the sum of all values of theta (a) pi (b) -pi(c)(5 pi)/(4) (d) (pi)/(2)

If 2cos(theta)+sin(theta)=1 and (3 pi)/(2)

If theta=(2 pi)/(4033), then cos theta*cos2 theta*cos3 theta*....cos2016 theta is equal

If 2 sin(theta+(pi)/(3))=cos(theta-(pi)/(6)) , then tantheta =