Home
Class 10
MATHS
[" (vi) "(x)/(6)+(y)/(15)=4],[(x)/(3)-(y...

[" (vi) "(x)/(6)+(y)/(15)=4],[(x)/(3)-(y)/(12)=(19)/(4),x!=0,y!=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (x)/(6)+(y)/(15)=4 , (x)/(3)-(y)/(12)=(19)/(4)

{:((x)/(3) + (y)/(15) = 4),((x)/(3) - (y)/(12) = (19)/(4)):}

If x/6+y/15=4 and x/3-y/12=4 3/4 find x and y.

The locus of a point "P" ,if the join of the points (2,3) and (-1,5) subtends right angle at "P" is x^(2)+y^(2)-x-8y+13=0 x^(2)-y^(2)-x+8y+3=0 x^(2)+y^(2)-4x-4y=0,(x,y)!=(0,4)&(4,0) x^(2)+y^(2)-x-8y+13=0,(x,y)!=(2,3)&(-1,5)

A parabola is drawn with its focus at (3,4) and vertex at the focus of the parabola y^(2)-12x-4y+4=0. The equation of the parabola is: (1)x^(2)-6x-8y+25=0 (2) y^(2)-8x-6y+25=0(3)x^(2)-6x+8y-25=0(4)x^(2)+6x-8y-25=0

If A_(1),A_(2),A_(3) be the areas of circles x^(2)+y^(2)+4x+6y-19=0, x^(2)+y^(2)=9, x^(2)+y^(2)-4x-6y-12=0 respectively then

If A_(1),A_(2),A_(3) be the areas of circles x^(2)+y^(2)+4x+6y-19=0, x^(2)+y^(2)=9, x^(2)+y^(2)-4x-6y-12=0 respectively then

Tangents drawn from the point P(1,8) to the circle x^(2)+y^(2)-6x-4y-11=0 touch the circle at the points A and B. The equation of the circumcircle of the triangle PAB is (A) x^(2)+y^(2)+4x-6y+19=0 (B) x^(2)+y^(2)-4x-10y+19=0 (B) x^(2)+y^(2)-2x+6y-29=0 (D) x^(2)+y^(2)-6x-4y+19=0

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0