Home
Class 12
MATHS
I=int e^((2x-1))dx...

I=int e^((2x-1))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int(e^(2x)-1)/(e^(2x))dx

If I_(1) = int_e^(e^(2)) (dx)/(log x) and I_(2) = int_1^(2) (e^(x)dx)/(x) then

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I_(1)=int_(e)^(e^(2))(dx)/(logx) and I_(2)=int_(1)^(2)(e^(x))/(x)dx then

If I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx, then

(i) int 2^x/sqrt(1-4^x) dx (ii) int sqrt(e^x-1) dx

" (i) "int(e^(tan^(-1)x)dx)/((1+x^(2))