Home
Class 12
MATHS
If f(a+b-x)=f(x), then prove that...

If `f(a+b-x)=f(x),` then prove that `int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dxdot`

Text Solution

Verified by Experts

Let `I=int_{a}^{b} x f(x) d x`
` therefore I=int_{a}^{b}(a+b-x) f(a+b-x) d x,(because int_{a}^{b} f(x) d x=int_{a}^{b} f(a+b-x) d x) `
` Rightarrow I=int_{a}^{b}(a+b-x) f(x) d x`
` Rightarrow I=(a+b) int_{a}^{b} f(x) d x-I[U s i n g(1)] `
` Rightarrow I+I=(a+b) int_{a}^{b} f(x) d x`
` Rightarrow 2 I=(a+b) int_{a}^{b} f(x) d x`
` Rightarrow I=(frac{a+b}{2}) int_{a}^{b} f(x) d x`
`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

If f(a+b-x0=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

int_a^b[d/dx(f(x))]dx

If f(a+b-x)=f(x) , then int_a^b x f(x)dx is equal to (A) (a-b)/2int_a^b f(a+b-x)dx (B) (a+b)/2int_a^b f(b-x)dx (C) (a+b)/2int_a^b f(x)dx (D) (b-a)/2int_a^b f(x)dx

int _(a) ^(b) f (x) dx =

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

If (2a+2b-x)=f(x), then int_(2a)^(2b)xf(x)dx is equal to