Home
Class 12
MATHS
Evaluate: intsqrt(9-x^2)dx...

Evaluate: `intsqrt(9-x^2)dx`

Text Solution

AI Generated Solution

To evaluate the integral \(\int \sqrt{9 - x^2} \, dx\), we can use the standard formula for the integral of the square root of a difference of squares. The formula is: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C \] where \(C\) is the constant of integration. ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsqrt (1-x^2)dx

Evaluate: intsqrt (1+x^2)dx

Evaluate intsqrt (4-x^2)dx

intsqrt(9x^2-4)dx=

Evaluate intsqrt(1+3x-x^2)dx .

intsqrt(4-x^(2))dx

intsqrt(4-9x^(2))dx

intsqrt(2x-x^(2))dx

Evaluate: intsqrt (1+x^2/9)dx

Evaluate intsqrt(x^(2)+3x)dx .