Home
Class 12
MATHS
[" Rove that "],[tan^(-1)(y^(2))/(3x)+ta...

[" Rove that "],[tan^(-1)(y^(2))/(3x)+tan^(-1)(2x)/(y)+tan^(-1)xy=7/2" where "x^(2)+y^(2)+z^(2)=x^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)(1/(x+y))+tan^(-1)(y/(x^2+xy+1) )= cot^(-1)x .

Prove the "tan"^(-1) 1/(x+y) + "tan"^(-1) y/(x^2=xy+1) ="tan"^(-1)1/x

Prove that tan ^(-1)""(1)/(x+y)+ tan ^(-1)""(y)/(x^(2)+xy+1)= cot ^(-1)x.

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

tan^(-1)""(x-y)/(1+xy)+tan^(-1)""(y-z)/(1+yz)+tan^(-1)""(z-x)/(1+zx) =tan^(-1)""(x^(2)-y^(2))/(1+x^(2)y^(2))+tan^(-1)""(y^(2)-z^(2))/(1+y^(2)z^(2))+tan^(-1) ""(z^(2)-x^(2))/(1+z^(2)x^(2))

If cos^(-1)x+Cos^(-1)y=(pi)/2 and Tan^(-1)x-Tan^(-1)y=0 then x^(2)+xy+y^(2)=

If xy=1 + a^(2) then show that tan^(-1) ""(1)/(a+x)+tan ^(-1) ""(1)/(a+y)=tan ^(-1)""(1)/(a) , x+y+2a ne 0

If x=2. y=3 , then tan^(-1)x+tan^(-1)y=