Home
Class 10
MATHS
f(x)=sqrt(x^(2)-|x|-2)+sqrt(-x^(2)+16)...

f(x)=sqrt(x^(2)-|x|-2)+sqrt(-x^(2)+16)

Promotional Banner

Similar Questions

Explore conceptually related problems

The largest domain for the real valued function given by f(x) =(sqrt(16-x^(2)))/(sqrt(x^(2)-1)) is:

If f(x)=sqrt(4-x^(2))+sqrt(x^(2)-1), then the maximum value of (f(x))^(2) is

If f(x)=sqrt(2x^(2)-6x+5)+sqrt(2x^(2)-40x+218) ,then the minimum value of f(x) is

Find the domain f(x)=sqrt(cos2x)+sqrt(16-x^(2))

If : f(x)=(1)/(sqrt(x^(2)+a^(2))+sqrt(x^(2)+b^(2)))" then: "f'(x)=

If : f(x)=(1)/(sqrt(x^(2)+a^(2))+sqrt(x^(2)+b^(2)))" then: "f'(x)=

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to

If f(x)=(sqrt(a^(2)-ax+x^(2))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) is continuous at x=0 then f(0)

The value of f(0), so that the function f(x)=(sqrt(a^(2)-ax+x^(2))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) becomes continuous for all x in given by

Let f(x)+f(y)=f(x sqrt(1-y^(2))+y sqrt(1-x^(2)))[f(x) is not identically zerol.Then f(4x^(3)-3x)+3f(x)=0f(4x^(3)-3x)=3f(x)f(2x sqrt(1-x^(2))+2f(x)=0f(2x sqrt(1-x^(2))=2f(x)