Home
Class 11
MATHS
If x+y+z=pi/2, then prove that |[sinx,...

If `x+y+z=pi/2,` then prove that `|[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

" if " |{:(sin x,,sin y,,sin z),(cos x,,cos y,,cos z),(cos^(3) x,,cos^(3)y,,cos^(3)z):}|=0 then which of the following is // are possible ?

" if " |{:(sin x,,sin y,,sin z),(cos x,,cos y,,cos z),(cos^(3) x,,cos^(3)y,,cos^(3)z):}|=0 then which of the following is // are possible ?

" if " |{:(sin x,,sin y,,sin z),(cos x,,cos y,,cos z),(cos^(3) x,,cos^(3)y,,cos^(3)z):}|=0 then which of the following is // are possible ?

Prove that (sinx-siny)/(cosx+cosy)=tan(x-y)/2

If x+y+z= pi/2 , prove that : cos(x-y-z) + cos(y-z-x) + cos (z-x-y)-4cosx cosy cosz=0

If x+y+z= pi/2 , prove that : cos(x-y-z) + cos(y-z-x) + cos (z-x-y)-4cosx cosy cosz=0

If sinx+siny+sinz=3," then "cosx+cosy+cosz is equal to

Prove that: (sinx-siny)/(cosx+cosy) =tan (x-y)/2

prove (sinx-siny)/(cosx+cosy)=tan(x-y)/2