Home
Class 11
MATHS
cos^(4)theta-sin^(4)theta+1=...

cos^(4)theta-sin^(4)theta+1=

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(4)theta-sin^(4)theta=(2)/(13) , find cos^(2)theta-sin^(2)theta+1 .

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

Prove the following: cos^4theta-sin^4theta+1=2cos^2theta

If cos@ theta - sin^2 theta = 1/x , (x > 1), then cos^4 theta - sin^4 theta = _________________

If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(3)) , then value of theta is

If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(2)) , then value of theta is