Home
Class 9
MATHS
25.a^(2)+ab(b+1)+b^(3)...

25.a^(2)+ab(b+1)+b^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise : (iii) a^(2) - ab (1-b) - b^(3)

The number of triplets (a, b, c) of positive integers satisfying the equation |(a^(3)+1,a^(2)b,a^(2)c),(ab^(2),b^(3)+1,b^(2)c),(ac^(2),bc^(2),c^(3)+1)|=30 is equal to

The number of triplets (a, b, c) of positive integers satisfying the equation |(a^(3)+1,a^(2)b,a^(2)c),(ab^(2),b^(3)+1,b^(2)c),(ac^(2),bc^(2),c^(3)+1)|=30 is equal to

If a = (sqrt5 + 1)/(sqrt5 + 1) and b = (sqrt5 -1)/(sqrt5 + 1) , then find the value of (a) (a^(2) + ab + b^(2))/(a^(2) - ab + b^(2)) (b) ((a -b)^(3))/((a + b)^(3)) (c) (3a^(2) + 5ab + b^(2))/(3a^(2) - 5ab + b^(2)) (d) (a^(3) + b^(3))/(a^(3) - b^(3))

a^(3)+3a^(2)b+3ab^(2)+b^(3) divided by a^(2)+2ab+b^(2) is

If a:b=2:3, then the value of (5a^(3)-2a^(2)b):(3ab^(2)-b^(3)) is :

Find the sum of n terms of the series (a+b)+(a^(2)+ab+b^(2))+(a^(3)+a^(2)b+ab^(2)+b^(3))+"......." where a ne 1,bne 1 and a ne b .

Find the sum of n terms of the series (a+b)+(a^(2)+ab+b^(2))+(a^(3)+a^(2)b+ab^(2)+b^(3))+"......." where a ne 1,bne 1 and a ne b .

Find the sum of n terms of the series (a+b)+(a^(2)+ab+b^(2))+(a^(3)+a^(2)b+ab^(2)+b^(3))+"......." where a ne 1,bne 1 and a ne b .